初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié)(精選28篇)
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇1
相關(guān)的角:
1、對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(zhǎng)線,這兩個(gè)角叫做對(duì)頂角。
2、互為補(bǔ)角:如果兩個(gè)角的和是一個(gè)平角,這兩個(gè)角做互為補(bǔ)角。
3、互為余角:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角叫做互為余角。
4、鄰補(bǔ)角:有公共頂點(diǎn),一條公共邊,另兩條邊互為反向延長(zhǎng)線的兩個(gè)角做互為鄰補(bǔ)角。
注意:互余、互補(bǔ)是指兩個(gè)角的數(shù)量關(guān)系,與兩個(gè)角的位置無(wú)關(guān),而互為鄰補(bǔ)角則要求兩個(gè)角有特殊的位置關(guān)系。
角的性質(zhì)
1、對(duì)頂角相等。
2、同角或等角的余角相等。
3、同角或等角的補(bǔ)角相等。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇2
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:
①在同一平面
、趦蓷l數(shù)軸
、刍ハ啻怪
、茉c(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇3
1.有理數(shù):
。1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
。2)有理數(shù)的分類:①②
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線。
3.相反數(shù):
。1)只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
。2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。
4.絕對(duì)值:
(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
。2)絕對(duì)值可表示為:或;絕對(duì)值的問題經(jīng)常分類討論;
5.有理數(shù)比大。海1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)—小數(shù)>0,小數(shù)—大數(shù)<0。
6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負(fù)倒數(shù)。
7.有理數(shù)加法法則:
。1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
。2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
。3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。
8.有理數(shù)加法的運(yùn)算律:
。1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。
9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)。
10.有理數(shù)乘法法則:
。1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
。2)任何數(shù)同零相乘都得零;
。3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。
11.有理數(shù)乘法的運(yùn)算律:
。1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
。3)乘法的分配律:a(b+c)=ab+ac。
12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),。
13.有理數(shù)乘方的法則:
。1)正數(shù)的任何次冪都是正數(shù);
。2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(—a)n=—an或(a—b)n=—(b—a)n,當(dāng)n為正偶數(shù)時(shí):(—a)n=an或(a—b)n=(b—a)n。
14.乘方的定義:
。1)求相同因式積的運(yùn)算,叫做乘方;
。2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。
16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說這個(gè)近似數(shù)的精確到那一位。
17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字。
18.混合運(yùn)算法則:先乘方,后乘除,最后加減。
本章內(nèi)容要求學(xué)生正確認(rèn)識(shí)有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對(duì)值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問題。
體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問題的能力。教師在講授本章內(nèi)容時(shí),應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇4
一、師德方面:加強(qiáng)修養(yǎng),塑造師德
我始終認(rèn)為作為一名教師應(yīng)把“師德”放在一個(gè)重要的位置上,因?yàn)檫@是教師的立身之本!皩W(xué)高為師,身正為范”,這個(gè)道理古今皆然。從踏上講臺(tái)的第一天,我就時(shí)刻嚴(yán)格要求自己,力爭(zhēng)做一個(gè)有崇高師德的人。我始終堅(jiān)持給學(xué)生一個(gè)好的師范,希望從我這走出去的都是合格的學(xué)生,都是一個(gè)個(gè)大寫的“人”。為了給自己的學(xué)生一個(gè)好的表率,同時(shí)也是使自己陶冶情操,加強(qiáng)修養(yǎng),課余時(shí)間我閱讀了大量的書籍,不斷提高自己水平。今后我將繼續(xù)加強(qiáng)師德方面的修養(yǎng),力爭(zhēng)在這一方面有更大的提高。
二、教學(xué)方面:虛心求教,強(qiáng)化自我
擔(dān)任兩個(gè)班的數(shù)學(xué)教學(xué)的工作任務(wù)是艱巨的,在實(shí)際工作中,那就得實(shí)干加巧干。對(duì)于一名數(shù)學(xué)教師來(lái)說,加強(qiáng)自身業(yè)務(wù)水平,提高教學(xué)質(zhì)量無(wú)疑是至關(guān)重要的。隨著歲月的流逝,伴著我教學(xué)天數(shù)的增加,我越來(lái)越感到我知識(shí)的匱乏,經(jīng)驗(yàn)的缺少。面對(duì)講臺(tái)下那一雙雙渴望的眼睛,每次上課我都感到自己責(zé)任之重大。為了盡快充實(shí)自己,使自己教學(xué)水平有一個(gè)質(zhì)的飛躍,我從以下幾個(gè)方面對(duì)自身進(jìn)行了強(qiáng)化。
首先是從教學(xué)理論和教學(xué)知識(shí)上。我不但自己訂閱了三四種教學(xué)雜志進(jìn)行教學(xué)參考,而且還借閱大量有關(guān)教學(xué)理論和教學(xué)方法的書籍,對(duì)于里面各種教學(xué)理論和教學(xué)方法盡量做到博采眾家之長(zhǎng)為己所用。在讓先進(jìn)的理論指導(dǎo)自己的教學(xué)實(shí)踐的同時(shí),我也在一次次的教學(xué)實(shí)踐中來(lái)驗(yàn)證和發(fā)展這種理論。
其次是從教學(xué)經(jīng)驗(yàn)上。由于自己教學(xué)經(jīng)驗(yàn)有限,有時(shí)還會(huì)在教學(xué)過程中碰到這樣或那樣的問題而不知如何處理。因而我虛心向老教師學(xué)習(xí),力爭(zhēng)從他們那里盡快增加一些寶貴的教學(xué)經(jīng)驗(yàn)。我個(gè)人應(yīng)付和處理課堂各式各樣問題的能力大大增強(qiáng)。
最后我做到“不恥下問”教學(xué)互長(zhǎng)。從另一個(gè)角度來(lái)說,學(xué)生也是老師的“教師”。由于學(xué)生接受新知識(shí)快,接受信息多,因此我從和他們的交流中亦能豐富我的教學(xué)知識(shí)。
三、考勤紀(jì)律方面
我嚴(yán)格遵守學(xué)校的各項(xiàng)規(guī)章制度,不遲到、不早退、有事主動(dòng)請(qǐng)假。在工作中,尊敬領(lǐng)導(dǎo)、團(tuán)結(jié)同事,能正確處理好與領(lǐng)導(dǎo)同事之間的關(guān)系。平時(shí),勤儉節(jié)約、任勞任怨、對(duì)人真誠(chéng)、熱愛學(xué)生、人際關(guān)系和諧融洽,從不鬧無(wú)原則的糾紛,處處以一名人民教師的要求來(lái)規(guī)范自己的言行,毫不松懈地培養(yǎng)自己的綜合素質(zhì)和能力。
四、業(yè)務(wù)進(jìn)修方面
隨著新課程改革對(duì)教師業(yè)務(wù)能力要求的提高,本人在教學(xué)之余,還擠時(shí)間自學(xué)本科和積極學(xué)習(xí)各類現(xiàn)代教育技術(shù)。
五、不足之處
反思一年多的工作,自己在一些細(xì)節(jié)工作上還存在著不足,特別是學(xué)生對(duì)作業(yè)本的保管、潛能生作業(yè)的書寫缺乏指導(dǎo)和嚴(yán)格要求。在今后的`工作中,應(yīng)充分注重工作中的細(xì)節(jié),盡量使自己的工作做得扎實(shí)。
總之,在這學(xué)期的教學(xué)工作中收獲了很多,提高了很多,同時(shí)也感受到了自己的不足。在今后的工作中,應(yīng)不斷提高自己的業(yè)務(wù)能力、充實(shí)自己的業(yè)務(wù)理論水平、提高自己在學(xué)生管理方面的能力、注重細(xì)節(jié)工作,一如既往的兢兢業(yè)業(yè),勤奮鉆研,盡量使自己的各項(xiàng)工作做得更扎實(shí)、更完善、更有效、更實(shí)在。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇5
轉(zhuǎn)眼的時(shí)間,我在教師的崗位上又走過了半年。追憶往昔,展望未來(lái),為了更好的總結(jié)經(jīng)驗(yàn)教訓(xùn)無(wú)愧于“合格的人民教師”這一稱號(hào),我現(xiàn)將20xx-20xx年度第一學(xué)期工作情況總結(jié)如下:
一、師德方面:加強(qiáng)修養(yǎng),塑造師德
我始終認(rèn)為作為一名教師應(yīng)把“師德”放在一個(gè)重要的位置上,因?yàn)檫@是教師的立身之本。“學(xué)高為師,身正為范”,這個(gè)道理古今皆然。從踏上講臺(tái)的第一天,我就時(shí)刻嚴(yán)格要求自己,力爭(zhēng)做一個(gè)有崇高師德的人。我始終堅(jiān)持給學(xué)生一個(gè)好的師范,希望從我這走出去的都是合格的學(xué)生,都是一個(gè)個(gè)大寫的“人”。為了給自己的學(xué)生一個(gè)好的表率,同時(shí)也是使自己陶冶情操,加強(qiáng)修養(yǎng),課余時(shí)間我閱讀了大量的書籍,不斷提高自己水平。今后我將繼續(xù)加強(qiáng)師德方面的修養(yǎng),力爭(zhēng)在這一方面有更大的提高。
二、教學(xué)方面:虛心求教,強(qiáng)化自我
擔(dān)任七年級(jí)兩個(gè)班的數(shù)學(xué)教學(xué)的工作任務(wù)是艱巨的,在實(shí)際工作中,那就得實(shí)干加巧干初中數(shù)學(xué)教師工作總結(jié)20xx-范文大全初中數(shù)學(xué)教師工作總結(jié)20xx-范文大全。對(duì)于一名數(shù)學(xué)教師來(lái)說,加強(qiáng)自身業(yè)務(wù)水平,提高教學(xué)質(zhì)量無(wú)疑是至關(guān)重要的。隨著歲月的流逝,伴著我教學(xué)天數(shù)的增加,我越來(lái)越感到我知識(shí)的匱乏,經(jīng)驗(yàn)的缺少。面對(duì)講臺(tái)下那一雙雙渴望的眼睛,每次上課我都感到自己責(zé)任之重大。為了盡快充實(shí)自己,使自己教學(xué)水平有一個(gè)質(zhì)的飛躍,我從以下幾個(gè)方面對(duì)自身進(jìn)行了強(qiáng)化。
首先是從教學(xué)理論和教學(xué)知識(shí)上。我借閱大量有關(guān)教學(xué)理論和教學(xué)方法的書籍,對(duì)于里面各種教學(xué)理論和教學(xué)方法盡量做到博采眾家之長(zhǎng)為己所用!。在讓先進(jìn)的理論指導(dǎo)自己的教學(xué)實(shí)踐的同時(shí),我也在一次次的教學(xué)實(shí)踐中來(lái)驗(yàn)證和發(fā)展這種理論。
其次是從教學(xué)經(jīng)驗(yàn)上。由于自己教學(xué)經(jīng)驗(yàn)有限,有時(shí)還會(huì)在教學(xué)過程中碰到這樣或那樣的問題而不知如何處理。因而我虛心向老教師學(xué)習(xí),力爭(zhēng)從他們那里盡快增加一些寶貴的教學(xué)經(jīng)驗(yàn)。我個(gè)人應(yīng)付和處理課堂各式各樣問題的能力大大增強(qiáng)。
最后我做到“不恥下問” 教學(xué)互長(zhǎng)。從另一個(gè)角度來(lái)說,學(xué)生也是老師的。由于學(xué)生接受新知識(shí)快,接受信息多,因此我從和他們的交流中亦能豐富我的教學(xué)知識(shí)。
為了不辜負(fù)領(lǐng)導(dǎo)的信任和同學(xué)的希望,我決心盡我最大所能去提高自身水平,爭(zhēng)取較出色的完成教學(xué)。為此,我一方面下苦功完善自身知識(shí)體系,打牢基礎(chǔ)知識(shí),使自己能夠比較自如的進(jìn)行教學(xué);另一方面,繼續(xù)向其他教師學(xué)習(xí),抽出業(yè)余時(shí)間向具有豐富教學(xué)經(jīng)驗(yàn)的老師學(xué)習(xí)。對(duì)待課程,虛心聽取他們意見,備好每一節(jié)課;仔細(xì)聽課,認(rèn)真學(xué)習(xí)他們上課的安排和技巧。這半年來(lái),通過認(rèn)真學(xué)習(xí)教學(xué)理論,刻苦鉆研教學(xué),虛心向老教師學(xué)習(xí),我自己感到在教學(xué)方面有了較大的提高。學(xué)生的成績(jī)也證實(shí)了這一點(diǎn),我教的班級(jí)在歷次考試當(dāng)中都取的了較好的成績(jī),。
三、 考勤紀(jì)律方面
我嚴(yán)格遵守學(xué)校的各項(xiàng)規(guī)章制度,不遲到、不早退、有事主動(dòng)請(qǐng)假。在工作中,尊敬領(lǐng)導(dǎo)、團(tuán)結(jié)同事,能正確處理好與領(lǐng)導(dǎo)同事之間的關(guān)系。平時(shí),勤儉節(jié)約、任勞任怨、對(duì)人真誠(chéng)、熱愛學(xué)生、人際關(guān)系和諧融洽,從不鬧無(wú)原則的糾紛,處處以一名人民教師的要求來(lái)規(guī)范自己的言行,毫不松懈地培養(yǎng)自己的綜合素質(zhì)和能力。
我擔(dān)任的兩個(gè)班級(jí)的數(shù)學(xué)教學(xué)工作取得了一定的成績(jī),我將繼續(xù)努力,取得更優(yōu)異的教學(xué)成績(jī),為學(xué)校爭(zhēng)光!
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇6
1.對(duì)稱軸:如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形;這條直線叫做對(duì)稱軸。
2.性質(zhì):(1)軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
(2)角平分線上的點(diǎn)到角兩邊距離相等。
(3)線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。
(4)與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
(5)軸對(duì)稱圖形上對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等。
3.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡(jiǎn)稱為“三線合一”。
5.等腰三角形的判定:等角對(duì)等邊。
6.等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°,
7.等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。
有一個(gè)角是60°的等腰三角形是等邊三角形
有兩個(gè)角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
本章內(nèi)容要求學(xué)生在建立在軸對(duì)稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來(lái)解決一些數(shù)學(xué)問題。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇7
列出方程(組)解應(yīng)用題的一般步驟是:
1審題:弄清題意和題目中的已知數(shù)、未知數(shù);
2找等量關(guān)系:找出能夠表示應(yīng)用題全部含義的一個(gè)(或幾個(gè))相等關(guān)系;3設(shè)未知數(shù):據(jù)找出的相等關(guān)系選擇直接或間接設(shè)置未知數(shù)4列方程(組):根據(jù)確立的等量關(guān)系列出方程5解方程(或方程組),求出未知數(shù)的值;6檢驗(yàn):針對(duì)結(jié)果進(jìn)行必要的檢驗(yàn);
7作答:包括單位名稱在內(nèi)進(jìn)行完整的答語(yǔ)。
一,行程問題
基本概念:行程問題是研究物體運(yùn)動(dòng)的,它研究的'是物體速度、時(shí)間、行程三者之間的關(guān)系;竟铰烦蹋剿俣取?xí)r間;路程÷時(shí)間=速度;路程÷速度=時(shí)間關(guān)鍵問題:確定行程過程中的位置.相遇問題:速度和×相遇時(shí)間=相遇路程
追擊問題:追擊時(shí)間=路程差÷速度差流水問題:順?biāo)谐蹋剑ù伲伲另標(biāo)畷r(shí)間逆水行程=(船速-水速)×逆水時(shí)間順?biāo)俣龋酱伲倌嫠俣龋酱伲?/p>
靜水速度=(順?biāo)俣龋嫠俣龋?水速=(順?biāo)俣龋嫠俣龋?
二、利潤(rùn)問題
現(xiàn)價(jià)=原價(jià)*折扣率
折扣價(jià)=現(xiàn)價(jià)/原價(jià)*100%
每件商品的利潤(rùn)=售價(jià)-進(jìn)貨價(jià)=利潤(rùn)率*進(jìn)價(jià)毛利潤(rùn)=銷售額-費(fèi)用
利潤(rùn)率=(售價(jià)--進(jìn)價(jià))/進(jìn)價(jià)*100%標(biāo)價(jià)=售價(jià)=現(xiàn)價(jià)進(jìn)價(jià)=售價(jià)-利潤(rùn)售價(jià)=利潤(rùn)+進(jìn)價(jià)
三、計(jì)算利息的基本公式
儲(chǔ)蓄存款利息計(jì)算的基本公式為:利息=本金×存期×利率
稅率=應(yīng)納數(shù)額/總收入*100%
本息和=本金+利息
稅后利息=本金*存期*利率*(1-稅率)稅后利息=利息*稅率
利率-利息/存期/本金/*100%利率的換算:
年利率、月利率、日利率三者的換算關(guān)系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意與存期相一致。利潤(rùn)與折扣問題的公式利潤(rùn)=售出價(jià)-成本
利潤(rùn)率=利潤(rùn)÷成本×100%=(售出價(jià)÷成本-1)×100%漲跌金額=本金×漲跌百分比
折扣=實(shí)際售價(jià)÷原售價(jià)×100%(折扣<1)利息=本金×利率×?xí)r間稅后利息=本金×利率×?xí)r間×(1-20%)
四、濃度問題
溶質(zhì)的重量+溶劑的重量=溶液的重量溶質(zhì)的重量÷溶液的重量×100%=濃度溶液的重量×濃度=溶質(zhì)的重量溶質(zhì)的重量÷濃度=溶液的重量
五、增長(zhǎng)率問題
若平均增長(zhǎng)(下降)數(shù)百分率為x,增長(zhǎng)(或下降)前的是a,增長(zhǎng)(或下降)n次后的量是b,則它們的數(shù)量關(guān)系可表示為:a(1+x)n=b或a(1-x)=bn
六、工程問題
工作效率=總工作量/工作時(shí)間工作時(shí)間=總工作量/工作效率
七、賽事,票價(jià)問題
賽事
單循環(huán)賽:n(n-1)/2
淘汰賽:n個(gè)球隊(duì),比賽場(chǎng)數(shù)為n-1場(chǎng)次票價(jià)則對(duì)應(yīng)的不一樣的賽制乘以對(duì)應(yīng)的單價(jià)。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇8
角度制知識(shí):用度(°)、分(′)、秒(″)來(lái)測(cè)量角的大小的制度叫做角度制。
角度制
角度制:規(guī)定周角的360分之一為1度的角,用度作為單位來(lái)度量角的單位制叫做角度制。
角度制中單位的換算。
角度制中,1°=60′,1′=60″,1′=(1/60)°,1″=(1/60)′。
角度制就是運(yùn)用60進(jìn)制的例子。
角度制中角度的運(yùn)算。
兩個(gè)角相加時(shí),°與°相加,′與′相加,″與″相加,其中如果滿60則進(jìn)1。
兩個(gè)角相減時(shí),°與°相減,′與′相減,″與″相減,其中如果不夠則從上一個(gè)單位退1當(dāng)作60。
測(cè)量角的大小的另外一個(gè)方法,角度制與弧度制的換算。
主要把握180°=π rad這個(gè)關(guān)系式。
例如:1度=π /180 弧度30度轉(zhuǎn)換成弧度值:弧度=30*π /180終邊相同的角的表示β=α+k360°k屬于整數(shù)。
知識(shí)歸納:除了角度制可以測(cè)量角的大小,還有一種——弧度制也可以測(cè)量角的大小。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇9
正棱錐是棱錐的一種,具備著所有棱錐的性質(zhì)和定理。
正棱錐
如果一個(gè)棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面的中心,這樣的棱錐叫正棱錐。
正棱錐的性質(zhì)
(1)正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高);
(2)正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形;
(3)正棱錐的側(cè)棱與底面所成的角都相等;正棱錐的側(cè)面與底面所成的二面角都相等;
(4)正棱錐的側(cè)面積:如果正棱錐的底面周長(zhǎng)為c,斜高為h’,那么它的側(cè)面積是 s=1/2ch‘。
特別地,側(cè)棱與底面邊長(zhǎng)相等的正三棱錐叫做正四面體。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇10
我們來(lái)自農(nóng)村的教師得以與眾多專家、學(xué)者面對(duì)面地座談、交流,傾聽他們對(duì)數(shù)學(xué)教學(xué)的理解,感悟他們的教育教學(xué)思想方法。這次培訓(xùn)內(nèi)容豐富,安排合理,使學(xué)員們受益匪淺。
一、理論學(xué)習(xí),飛的更高。
(一)專家講座,思想理念的提升!
我們這次培訓(xùn)班名稱是:“國(guó)培計(jì)劃”——初中數(shù)學(xué)骨干教師培訓(xùn)班,班主任是易才鳳老師,副班主任是劉詠梅和虞秀云老師,班主任助理是周玲芳和陳艷鳳。本次培訓(xùn),聽了專家胡惠閔教授《基于學(xué)生經(jīng)驗(yàn)的學(xué)習(xí)活動(dòng)設(shè)計(jì)研究》等講座14個(gè),從師德、當(dāng)前教育教學(xué)改革動(dòng)向、教科研、課堂教學(xué)專題、教材解讀、現(xiàn)代教育技術(shù)應(yīng)用等多方面進(jìn)行,各位知名專家、學(xué)者、特級(jí)教師從自己切身的經(jīng)驗(yàn)體會(huì)出發(fā),暢談了他們對(duì)師德以及教學(xué)等教育教學(xué)各個(gè)領(lǐng)域的獨(dú)特見解。讓我們更清晰地意識(shí)到作為一個(gè)農(nóng)村教師該如何看待自己所處的位置,該如何去提升自己的專業(yè)水平。在知識(shí)方面,我們深感知識(shí)學(xué)問浩如煙海,也深深地體會(huì)到教學(xué)相長(zhǎng)的深刻內(nèi)涵。教師要有精深的學(xué)科專業(yè)知識(shí),廣博的科學(xué)文化知識(shí),豐富的教育和心理科學(xué)知識(shí)。知識(shí)結(jié)構(gòu)要合理,當(dāng)今的自然科學(xué),社會(huì)科學(xué)和人文科學(xué)互相滲透,相互融合,只懂自己專業(yè)的知識(shí)是遠(yuǎn)遠(yuǎn)不夠的,這一點(diǎn)我們?cè)趯W(xué)習(xí)中體會(huì)很深。精深的專業(yè)知識(shí)是教師擔(dān)任教學(xué)工作的基礎(chǔ)。這就要求教師要扎實(shí)的掌握本學(xué)科的基礎(chǔ)理論,基礎(chǔ)知識(shí)以及相應(yīng)的技能,并運(yùn)用自如。熟悉本學(xué)科的學(xué)習(xí)方法和研究方法,同時(shí)還要具備一定的與本學(xué)科相關(guān)的知識(shí)。學(xué)員們?cè)谶@次培訓(xùn)中發(fā)現(xiàn)自己專業(yè)知識(shí)還很欠缺。只有掌握全面的學(xué)科知識(shí)才能在教學(xué)過程中高屋建瓴的處理好教材,把握住教材的難點(diǎn),才能有對(duì)教材內(nèi)容深入淺出的講解。從而保證教學(xué)流暢地進(jìn)行,使學(xué)生既學(xué)到知識(shí),又掌握學(xué)習(xí)方法和發(fā)展能力。
(二)學(xué)員論壇,思想交流的園地!
在理論培訓(xùn)階段,為了提升每位學(xué)員自身的理論水平,安排了三次小組交流。在小組討論中,學(xué)員們暢所欲言,許多提出的觀點(diǎn)和問題,都是農(nóng)村數(shù)學(xué)教學(xué)中的實(shí)際問題,引起全體學(xué)員的一致共鳴的同時(shí),也得到專家們的重視,他們的回答也給了我們很好的啟示,對(duì)于我們今后的教學(xué)有著積極的促進(jìn)作用。對(duì)每一個(gè)專題進(jìn)行總結(jié),有了自己的看法,有了自己的思想,有些觀點(diǎn)非常精髓,有獨(dú)到的見解,我們有些學(xué)員開玩笑的說:“我們自己也有一些專家的天份!”。
(三)反思,理論水平提高的源泉!
這次培訓(xùn)要求每個(gè)學(xué)員每天都要做筆記,寫反思學(xué)習(xí)日志,寫心得體會(huì),提出困惑。也為我們學(xué)習(xí)和交流提供了一平臺(tái)。認(rèn)識(shí)到繼續(xù)教育的重要性,樹立終身學(xué)習(xí)的目標(biāo),這次培訓(xùn),就自身更新優(yōu)化而言,使學(xué)員們樹立了終身學(xué)習(xí)的思想。通過培訓(xùn),感覺以前所學(xué)的知識(shí)太有限了,看問題的眼光也太膚淺了。教師只有樹立“活到老,學(xué)到老”的終身教育思想,才能跟上時(shí)代前進(jìn)和知識(shí)發(fā)展的步伐,才能勝任復(fù)雜而又富有創(chuàng)造性的教育工作!皢柷堑们迦缭S,唯有源頭活水來(lái)!敝挥胁粩鄬W(xué)習(xí),不斷充實(shí)自己的知識(shí),不斷更新自己的教育觀念,不斷否定自己,才能不斷進(jìn)步,擁有的知識(shí)才能像‘泉水”般沽沽涌出,而不只是可憐的“一桶水”了。
二、同行交流,取長(zhǎng)補(bǔ)短!
本次培訓(xùn),匯聚了全省各地的骨干教師,每位培訓(xùn)教師都有豐富的教學(xué)經(jīng)驗(yàn),教學(xué)的外部條件也非常相似,但也存在著許多的差異,為我們之間的相互交流提供了很好的一個(gè)交流平臺(tái)。因此,成員之間的互動(dòng)交流成為每位培訓(xùn)人員提高自己教學(xué)業(yè)務(wù)水平的一條捷徑。在培訓(xùn)過程中,學(xué)員們?cè)诮涣鬟^程中,了解到各區(qū)縣的新課程開展情況,并且注意到他們是如何處理新課程中遇到的種種困惑,以及他們對(duì)新課程教材的把握與處理。在培訓(xùn)中,我們不斷地交流,真正做到彼此之間的相互促進(jìn),共同提高。
三、教學(xué)實(shí)踐,飛得更遠(yuǎn)!
(一)教學(xué)實(shí)踐,本身就是一種環(huán)境的體驗(yàn)。
在職研修自主學(xué)習(xí)安排三個(gè)月,12月18日開始,我們回到學(xué)校進(jìn)行教學(xué)實(shí)踐分散學(xué)習(xí)。通過教學(xué)策略的修正,對(duì)比教學(xué),使我感觸到自身課堂教學(xué)中最本源的東西,在教學(xué)中反思,在反思中成長(zhǎng)。同時(shí),在教學(xué)實(shí)踐的過程中,積極參與學(xué)校的校本教研活動(dòng),經(jīng)常聽一些優(yōu)秀教師講課,學(xué)習(xí)他們規(guī)范的組織方式,感受他們濃厚的教研氛圍,積極尋找差距所在,當(dāng)然,也積極報(bào)名參加上公開課,接受自我反思和導(dǎo)師與同伴的診斷,使我對(duì)于校本教研有了更好的認(rèn)識(shí)與把握。
(二)校本教研,診斷提高。
在集體備課的前提下,采用“示范—診斷—提升”的實(shí)踐模式:指定教師上示范課,其余教師觀摩——我和同伴聽課診斷——我指導(dǎo)教師進(jìn)行診斷性說課、評(píng)課——我指導(dǎo)教師修改教案—指定教師上第二次課(提高課)、我和同伴聽課——我指導(dǎo)教師進(jìn)行教學(xué)反思和總結(jié)。通過實(shí)實(shí)在在的行為,加深教師對(duì)教學(xué)的理解,加深對(duì)課堂的掌控,加深對(duì)細(xì)節(jié)的把握,從而提高課堂教學(xué)藝術(shù)。
四個(gè)月的培訓(xùn)是短暫的,但是留給我的記憶與思考是永恒的,通過這次培訓(xùn),使我提高了認(rèn)識(shí),理清了思路,找到了自身的不足之處以及與一名優(yōu)秀教師的差距所在,對(duì)于今后如何更好的提高自己必將起到巨大的推動(dòng)作用,我將以此為起點(diǎn),讓“差距”成為自身發(fā)展的原動(dòng)力,不斷梳理與反思自我,促使自己不斷成長(zhǎng)。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇11
1、掌握最基本的五種尺規(guī)作圖
、、作一條線段等于已知線段。
、啤⒆饕粋(gè)角等于已知角。
⑶、平分已知角。
、取⒔(jīng)過一點(diǎn)作已知直線的垂線。
⑸、作線段的垂直平分線。
2、掌握課本中各章要求的作圖題
⑴、根據(jù)條件作任意的三角形、等要素那角性、直角三角形。
、啤⒏鶕(jù)給出條件作一般四邊形、平行四邊形、矩形、菱形、正方形、梯形等。
、恰⒆饕阎獔D形關(guān)于一點(diǎn)、一條直線對(duì)稱的'圖形。
、、會(huì)作三角形的外接圓、內(nèi)切圓。
、、平分已知弧。
、、作兩條線段的比例中項(xiàng)。
、、作正三角形、正四邊形、正六邊形等。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇12
一、特殊的平行四邊形:
1.矩形:
。1)定義:有一個(gè)角是直角的平行四邊形。
。2)性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線平分且相等。
(3)判定定理:
、儆幸粋(gè)角是直角的平行四邊形叫做矩形。
、趯(duì)角線相等的平行四邊形是矩形。
、塾腥齻(gè)角是直角的四邊形是矩形。
直角三角形的性質(zhì):直角三角形中所對(duì)的直角邊等于斜邊的一半。
2.菱形:
(1)定義:鄰邊相等的平行四邊形。
。2)性質(zhì):菱形的四條邊都相等;菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
。3)判定定理:
①一組鄰邊相等的平行四邊形是菱形。
②對(duì)角線互相垂直的平行四邊形是菱形。
③四條邊相等的四邊形是菱形。
。4)面積:
3.正方形:
。1)定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。
。2)性質(zhì):四條邊都相等,四個(gè)角都是直角,對(duì)角線互相垂直平分。正方形既是矩形,又是菱形。
。3)正方形判定定理:
①對(duì)角線互相垂直平分且相等的四邊形是正方形;
②一組鄰邊相等,一個(gè)角為直角的平行四邊形是正方形;
、蹖(duì)角線互相垂直的矩形是正方形;
、茑忂呄嗟鹊木匦问钦叫
、萦幸粋(gè)角是直角的菱形是正方形;
、迣(duì)角線相等的菱形是正方形。
二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:
1.矩形、菱形和正方形都是特殊的平行四邊形,其性質(zhì)都是在平行四邊形的基礎(chǔ)上擴(kuò)充來(lái)的。矩形是由平行四邊形增加“一個(gè)角為90°”的條件得到的,它在角和對(duì)角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對(duì)角線方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個(gè)角為90°”兩個(gè)條件得到的,它在邊、角和對(duì)角線方面都具有比平行四邊形更多的特性。
2.矩形、菱形的判定可以根據(jù)出發(fā)點(diǎn)不同而分成兩類:一類是以四邊形為出發(fā)點(diǎn)進(jìn)行判定,另一類是以平行四邊形為出發(fā)點(diǎn)進(jìn)行判定。而正方形除了上述兩個(gè)出發(fā)點(diǎn)外,還可以從矩形和菱形出發(fā)進(jìn)行判定。
三、判定一個(gè)四邊形是特殊四邊形的步驟:
常見考法
。1)利用菱形、矩形、正方形的`性質(zhì)進(jìn)行邊、角以及面積等計(jì)算;
(2)靈活運(yùn)用判定定理證明一個(gè)四邊形(或平行四邊形)是菱形、矩形、正方形;
。3)一些折疊問題;
。4)矩形與直角三角形和等腰三角形有著密切聯(lián)系、正方形與等腰直角三角形也有著密切聯(lián)系。所以,以此為背景可以設(shè)置許多考題。
誤區(qū)提醒
。1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點(diǎn)易出現(xiàn)混淆;
。2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點(diǎn)也易出現(xiàn)混淆;
。3)不能正確的理解和運(yùn)用判定定理進(jìn)行證明,(如在證明菱形時(shí),把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);
。4)再利用對(duì)角線長(zhǎng)度求菱形的面積時(shí),忘記乘;
。5)判定一個(gè)四邊形是特殊的平行四邊形的條件不充分。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇13
1過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等
5過一點(diǎn)有且只有一條直線和已知直線垂直
6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊
17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°18推論1直角三角形的兩個(gè)銳角互余
19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線44定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等53平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分
56平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對(duì)角線相等
62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對(duì)角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等
65菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角66菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分
73逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對(duì)角線相等
76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對(duì)角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰80推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半
L=(a+b)÷2S=L×h
83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
91相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
96性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比97性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比98性質(zhì)定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等
105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的.兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等118推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)125推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
126切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對(duì)邊的和相等128弦切角定理弦切角等于它所夾的弧對(duì)的圓周角
129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)
133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135①兩圓外離d>R+r
②兩圓外切d=R+r
、蹆蓤A相交R-r<d<R+r(R>r)④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)
136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
(n2)180139正n邊形的每個(gè)內(nèi)角都等于
n140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
pnrn141正n邊形的面積Sn=p表示正n邊形的周長(zhǎng)
2142正三角形面積
32aa表示邊長(zhǎng)4143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,
k(n2)180360化為(n-2)(k-2)=4因此
n144弧長(zhǎng)計(jì)算公式:L=
nR180nR2LR145扇形面積公式:S扇形==
3602146內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)
公式分類及公式表達(dá)式
乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
bb24ac2a
根與系數(shù)的關(guān)系:X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式
b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根b2-4ac
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇14
1 平行四邊形
性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分。
判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;
兩組對(duì)角分別相等的四邊形是平行四邊形;
對(duì)角線互相平分的四邊形是平行四邊形;
一組對(duì)邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2 特殊的平行四邊形:矩形、菱形、正方形
(1) 矩形
性質(zhì):矩形的四個(gè)角都是直角;
矩形的對(duì)角線相等;
矩形具有平行四邊形的所有性質(zhì)
判定: 有一個(gè)角是直角的平行四邊形是矩形; 對(duì)角線相等的平行四邊形是矩形;
推論: 直角三角形斜邊的中線等于斜邊的一半。
(2) 菱形 性質(zhì):菱形的四條邊都相等; 菱形的.對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角; 菱形具有平行四邊形的一切性質(zhì)
判定:有一組鄰邊相等的平行四邊形是菱形; 對(duì)角線互相垂直的平行四邊形是菱形; 四邊相等的四邊形是菱形。
(3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有 性質(zhì)。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等; 等腰梯形的兩條對(duì)角線相等; 同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇15
1、過兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等
4、同角或等角的余角相等
5、過一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇16
知識(shí)點(diǎn)總結(jié)
1.定義:兩組對(duì)邊分別平行的四邊形叫平行四邊形
2.平行四邊形的性質(zhì)
(1)平行四邊形的對(duì)邊平行且相等;
。2)平行四邊形的鄰角互補(bǔ),對(duì)角相等;
。3)平行四邊形的對(duì)角線互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對(duì)平行四邊形的五種判定方法,進(jìn)行劃分:
第一類:與四邊形的對(duì)邊有關(guān)
。1)兩組對(duì)邊分別平行的四邊形是平行四邊形;
。2)兩組對(duì)邊分別相等的四邊形是平行四邊形;
。3)一組對(duì)邊平行且相等的四邊形是平行四邊形;
第二類:與四邊形的對(duì)角有關(guān)
。4)兩組對(duì)角分別相等的'四邊形是平行四邊形;
第三類:與四邊形的對(duì)角線有關(guān)
。5)對(duì)角線互相平分的四邊形是平行四邊形
常見考法
(1)利用平行四邊形的性質(zhì),求角度、線段長(zhǎng)、周長(zhǎng);
(2)求平行四邊形某邊的取值范圍;
(3)考查一些綜合計(jì)算問題;
(4)利用平行四邊形性質(zhì)證明角相等、線段相等和直線平行;
。5)利用判定定理證明四邊形是平行四邊形。
誤區(qū)提醒
。1)平行四邊形的性質(zhì)較多,易把對(duì)角線互相平分,錯(cuò)記成對(duì)角線相等;
(2)“一組對(duì)邊平行且相等的四邊形是平行四邊形”錯(cuò)記成“一組對(duì)邊平行,一組對(duì)邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇17
一、在創(chuàng)新中培養(yǎng)學(xué)生的歸納意?R
在初中數(shù)學(xué)教學(xué)中,重點(diǎn)是對(duì)學(xué)生的創(chuàng)新精神和實(shí)踐能力的培養(yǎng),體現(xiàn)出現(xiàn)代素質(zhì)教育。學(xué)生創(chuàng)新能力的培養(yǎng)在學(xué)習(xí)中占據(jù)非常重要的作用,在創(chuàng)新中學(xué)生可以鞏固自身所學(xué)的知識(shí),使數(shù)學(xué)知識(shí)在自己的頭腦中根深蒂固,各類知識(shí)點(diǎn)在學(xué)生的頭腦中形成清晰的框架,有助于學(xué)生歸納意識(shí)的培養(yǎng)。歸納意識(shí)的培養(yǎng),可以減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān),提升學(xué)生對(duì)知識(shí)的理解能力。
初中生在學(xué)習(xí)數(shù)學(xué)的環(huán)節(jié)中,常常會(huì)接觸到大量的圖像,在數(shù)學(xué)學(xué)習(xí)中,老師應(yīng)該鼓勵(lì)學(xué)生大膽創(chuàng)新,在創(chuàng)新環(huán)節(jié)中完成對(duì)知識(shí)點(diǎn)的歸納。數(shù)學(xué)學(xué)習(xí)并不死板,不僅僅學(xué)習(xí)教科書上的知識(shí),還應(yīng)該學(xué)習(xí)書本以外的知識(shí),從而創(chuàng)新自己的思維。例如在進(jìn)行函數(shù)的學(xué)習(xí)中,老師可以讓學(xué)生繪制函數(shù)圖像,對(duì)函數(shù)進(jìn)行分類討論,從而掌握遞增函數(shù)和遞減函數(shù)的定義,在分類討論后,學(xué)生結(jié)合圖像進(jìn)行歸納。在數(shù)學(xué)教學(xué)中,老師不僅僅要重視書本上的邏輯內(nèi)容,而且在把握邏輯內(nèi)容的基礎(chǔ)上,將圖像和數(shù)學(xué)知識(shí)有機(jī)結(jié)合起來(lái),使學(xué)生可以大膽創(chuàng)新。很多學(xué)生在數(shù)學(xué)學(xué)習(xí)中存在困難,認(rèn)為數(shù)學(xué)的學(xué)習(xí)就是解答大量的難題,他們?cè)诖罅康念}海戰(zhàn)術(shù)后不善于歸納,導(dǎo)致數(shù)學(xué)學(xué)習(xí)的效率不高。
二、在交流中歸納知識(shí)點(diǎn)
在數(shù)學(xué)學(xué)習(xí)中,如果學(xué)生只是自己探究,那么在學(xué)習(xí)中不會(huì)得到靈感。數(shù)學(xué)學(xué)習(xí)不僅僅要求學(xué)生具有認(rèn)真的鉆研態(tài)度,而且也需要老師幫助學(xué)生養(yǎng)成歸納的意識(shí)。溝通和交流不僅僅在語(yǔ)言的學(xué)習(xí)中發(fā)揮非常重要的作用,而且在數(shù)學(xué)學(xué)習(xí)中同樣非常重要。學(xué)生在解答數(shù)學(xué)問題中,常常會(huì)遇到一些問題,學(xué)生自己探究會(huì)陷入到死胡同中,需要老師和同學(xué)的幫助才能進(jìn)一步完成。
為了切實(shí)在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的'歸納意識(shí),老師可以將班級(jí)內(nèi)的學(xué)生分成幾個(gè)不同的小組,組內(nèi)的同學(xué)可以通過合作的方式,對(duì)知識(shí)點(diǎn)進(jìn)行歸納,在數(shù)學(xué)的學(xué)習(xí)中更加變通,將數(shù)學(xué)這門學(xué)科應(yīng)用到生活中。
例如,在進(jìn)行二次函數(shù)的學(xué)習(xí)中,老師可以將學(xué)生分成不同的小組,留給學(xué)生充足的時(shí)間,讓他們互相幫助,在溝通中對(duì)知識(shí)點(diǎn)進(jìn)行歸納。學(xué)生很快就能得到結(jié)論,如果函數(shù)有兩個(gè)解,那么函數(shù)與數(shù)軸會(huì)有兩個(gè)交點(diǎn),如果方程只有一個(gè)解,那么函數(shù)與數(shù)軸只有一個(gè)交點(diǎn),如果方程沒有解,那么函數(shù)與數(shù)軸沒有交點(diǎn)。學(xué)生通過分組討論的方式得到結(jié)論,通過歸納,學(xué)生對(duì)二次函數(shù)知識(shí)點(diǎn)的印象非常深刻。
三、學(xué)會(huì)正確歸納
在數(shù)學(xué)學(xué)習(xí)中,歸納思想非常重要,數(shù)學(xué)這門學(xué)科的知識(shí)非常細(xì)碎,是一門系統(tǒng)性很強(qiáng)的學(xué)科。數(shù)學(xué)知識(shí)錯(cuò)綜復(fù)雜,很多學(xué)生在學(xué)習(xí)數(shù)學(xué)中力不從心,掌握合理的歸納方式,可以切實(shí)提升學(xué)生的數(shù)學(xué)成績(jī)。初中生的思維還不是特別完善,在進(jìn)行數(shù)學(xué)學(xué)習(xí)環(huán)節(jié)中,對(duì)知識(shí)點(diǎn)進(jìn)行合理的歸納,是每位老師應(yīng)該采取的方法。如果學(xué)生不懂得歸納,那么在數(shù)學(xué)考試中,學(xué)生會(huì)將知識(shí)點(diǎn)混淆。為了提升學(xué)生的歸納能力,老師在課堂上應(yīng)該將一些容易混淆和容易出現(xiàn)錯(cuò)誤的習(xí)題讓學(xué)生總結(jié)。
例如,在學(xué)習(xí)圓和直線這部分內(nèi)容中,老師都會(huì)將重點(diǎn)內(nèi)容,圓和圓的位置關(guān)系,直線和圓的位置關(guān)系進(jìn)行重點(diǎn)分析。老師可以借助一些參考書目和資料,總結(jié)一些相似的題目,讓學(xué)生在課堂上解答這些題目,使學(xué)生對(duì)這部分知識(shí)點(diǎn)進(jìn)行總結(jié),從而加深對(duì)這部分知識(shí)的理解。歸納思想在數(shù)學(xué)學(xué)習(xí)中應(yīng)用非常多,在進(jìn)行初中數(shù)學(xué)教學(xué)環(huán)節(jié)中,學(xué)生應(yīng)該花更多的時(shí)間進(jìn)行歸納。在進(jìn)行初中數(shù)學(xué)的學(xué)習(xí)中,學(xué)生歸納意識(shí)的養(yǎng)成可以完善學(xué)生的數(shù)學(xué)思維,學(xué)生學(xué)會(huì)歸納,在學(xué)習(xí)中就會(huì)如魚得水,在考試中取得好成績(jī)。
四、在反思中完成知識(shí)點(diǎn)的歸納
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇18
不知不覺,一個(gè)學(xué)期的教學(xué)工作又告一段落了。本學(xué)期是我第一次擔(dān)任數(shù)學(xué)教學(xué)工作,經(jīng)驗(yàn)尚淺,開始,對(duì)于重難點(diǎn),易錯(cuò)點(diǎn)及中考方向可以說毫無(wú)頭緒。為不辜負(fù)校領(lǐng)導(dǎo)及前輩們的信任,我絲毫不敢怠慢,認(rèn)真學(xué),積極請(qǐng)教,努力適應(yīng)新時(shí)期教學(xué)工作的要求,從各方面嚴(yán)格要求自己,結(jié)合學(xué)生的實(shí)際情況,勤勤懇懇,兢兢業(yè)業(yè),使教學(xué)工作有計(jì)劃,有組織,有效率地開展。一學(xué)期下來(lái)確實(shí)取得了一定的成績(jī)。為使今后的工作取得更大的進(jìn)步,現(xiàn)對(duì)本學(xué)期教學(xué)工作做出總結(jié),希望能發(fā)揚(yáng)優(yōu)點(diǎn),克服不足,以促進(jìn)教訓(xùn)工作更上一層樓。
一、認(rèn)真?zhèn)湔n,不但備學(xué)生而且備教材備教法,根據(jù)教材內(nèi)容及學(xué)生的實(shí)際,設(shè)計(jì)課的類型,選擇教學(xué)方法,認(rèn)真寫好教案。每一課都做到“有備而來(lái)”,每堂課都在課前做好充分的準(zhǔn)備,課后及時(shí)對(duì)該課作出總結(jié),寫好教學(xué)后記,并認(rèn)真按搜集每課書的知識(shí)要點(diǎn),歸納成集。
二、增強(qiáng)上課技能,提高教學(xué)質(zhì)量,做到線索清晰,層次分明,言簡(jiǎn)意賅,深入淺出。在課堂上特別注意調(diào)動(dòng)學(xué)生的積極性,加強(qiáng)師生交流,充分體現(xiàn)學(xué)生的主作用,讓學(xué)生學(xué)得容易,學(xué)得輕松,學(xué)得愉快;注意精講精練,在課堂上老師講得盡量少,學(xué)生動(dòng)口動(dòng)手動(dòng)腦盡量多;同時(shí)在每一堂課上都充分考慮每一個(gè)層次的學(xué)生學(xué)需求和學(xué)能力,讓各個(gè)層次的學(xué)生都得到提高。現(xiàn)在很多學(xué)生反映喜歡上數(shù)學(xué)課了。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇19
1.分式:形如A/B,A、B是整式,B中含有未知數(shù)且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。
2.分式有意義的條件:分母不等于0。
3.約分:把一個(gè)分式的分子和分母的公因式(不為1的數(shù))約去,這種變形稱為約分。
4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。
分式的基本性質(zhì):分式的分子和分母同時(shí)乘以(或除以)同一個(gè)不為0的整式,分式的值不變。用式子表示為:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C為整式,且C≠0)
5.最簡(jiǎn)分式:一個(gè)分式的分子和分母沒有公因式時(shí),這個(gè)分式稱為最簡(jiǎn)分式.約分時(shí),一般將一個(gè)分式化為最簡(jiǎn)分式.
6.分式的四則運(yùn)算:
1)同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/c±b/c=a±b/c
2)異分母分式加減法則:異分母的.分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進(jìn)行計(jì)算.用字母表示為:a/b±c/d=ad±cb/bd
3)分式的乘法法則:兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b * c/d=ac/bd
4)分式的除法法則:
(1)兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.a/b÷c/d=ad/bc
(2)除以一個(gè)分式,等于乘以這個(gè)分式的倒數(shù):a/b÷c/d=a/b*d/c
7.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.
8.分式方程的解法:
①去分母(方程兩邊同時(shí)乘以最簡(jiǎn)公分母,將分式方程化為整式方程);
、诎唇庹椒匠痰牟襟E求出未知數(shù)的值;
③驗(yàn)根(求出未知數(shù)的值后必須驗(yàn)根,因?yàn)樵诎逊质椒匠袒癁檎椒匠痰倪^程中,擴(kuò)大了未知數(shù)的取值范圍,可能產(chǎn)生增根)。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇20
1、三角形、平行四邊形和梯形的計(jì)算
用到的定理主要有三角形全等定理,中位線定理,等腰三角形、直角三角形、正三角形及各種平行四邊形的性質(zhì)等定理。關(guān)于梯形中線段計(jì)算主要依據(jù)梯形中位線定理及等腰梯形、直角梯形的性質(zhì)定理等。
2、有關(guān)圓的線段計(jì)算的主要依據(jù)
、、切線長(zhǎng)定理
⑵、圓切線的性質(zhì)定理。
、、垂徑定理。
、取A外切四邊形兩組對(duì)邊的和相等。
、、兩圓外切時(shí)圓心距等于兩圓半徑之和,兩圓內(nèi)切時(shí)圓心距等于兩半徑之差。
3、直角三角形邊的計(jì)算
直角三角形邊長(zhǎng)的計(jì)算應(yīng)用最廣,其理論依據(jù)主要是勾股定理和特殊角三角形的`性質(zhì)及銳角三角函數(shù)等。
4、成比例線段長(zhǎng)度的求法
、拧⑵叫芯分線段成比例定理;
、、相似形對(duì)應(yīng)線段的比等于相似比;
⑶、射影定理;
、取⑾嘟幌叶ɡ砑巴普,切割線定理及推論;
、伞⒄噙呅蔚倪吅推渌段計(jì)算轉(zhuǎn)化為特殊三角形。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇21
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:
、僭谕黄矫
②兩條數(shù)軸
、刍ハ啻怪
、茉c(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向。
、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成。
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成。
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇22
一、圓
1、圓的有關(guān)性質(zhì)
在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(zhǎng)的點(diǎn)都在圓上。
就是說:圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。
圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱弧。
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個(gè)圓叫同心圓。
能夠重合的兩個(gè)圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點(diǎn)的圓
l、過三點(diǎn)的圓
過三點(diǎn)的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
經(jīng)過三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個(gè)步驟:
、偌僭O(shè)命題的結(jié)論不成立;
、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;
、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個(gè)角是鈍角。
證明:設(shè)有兩個(gè)以上是鈍角
則兩個(gè)鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個(gè)以上是鈍角。
即最多只能有一個(gè)是鈍角。
三、垂直于弦的直徑
圓是軸對(duì)稱圖形,經(jīng)過圓心的每一條直線都是它的對(duì)稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。
弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧。
平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來(lái)的圖形重合。
頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。
推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。
五、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。
推理2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
六、圓的判定性質(zhì)
1.不在同一直線上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1
、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角
12.①直線L和⊙O相交 d
、谥本L和⊙O相切 d=r
③直線L和⊙O相離 dr
13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑
15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
16.推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
17.切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對(duì)邊的和相等 外角等于內(nèi)對(duì)角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20.①兩圓外離 dR+r ②兩圓外切 d=R+r
③.兩圓相交 R-rr)
、.兩圓內(nèi)切 d=R-r(Rr) ⑤兩圓內(nèi)含dr)
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇23
通過培訓(xùn)的學(xué)習(xí)與交流,并在名師的指導(dǎo)下,讓我學(xué)習(xí)到了不少的教學(xué)方法,尤其是自己對(duì)課改有了深刻的認(rèn)識(shí),也大大提高了自己對(duì)本學(xué)科的理論素養(yǎng)。現(xiàn)將這次培訓(xùn)體會(huì)總結(jié)如下:
一、參加培訓(xùn)的認(rèn)識(shí)更深刻
有機(jī)會(huì)來(lái)參加這次培訓(xùn),有機(jī)會(huì)來(lái)充實(shí)和完善自己,我感到很快樂,也感到的是責(zé)任、是壓力!回顧這次的培訓(xùn),真是內(nèi)容豐富,形式多樣,效果明顯。培訓(xùn)中有各級(jí)教育專家的專題報(bào)告,有一線教師的專題講座,有學(xué)員圍繞專題進(jìn)行的各種行動(dòng)學(xué)習(xí),還有我回校后的教育教學(xué)實(shí)踐。這次的培訓(xùn)學(xué)習(xí),對(duì)我既有觀念上的洗禮,也有理論上的提高,既有知識(shí)上的積淀,也有教學(xué)技藝的增長(zhǎng)。這是收獲豐厚的一次培訓(xùn),也是促進(jìn)我教學(xué)上不斷成長(zhǎng)的一次培訓(xùn)。
二、讓我的.視野更開闊
觀看學(xué)習(xí)視頻使我領(lǐng)略到了教育專家和名師的風(fēng)采,專家和名師的課程深入淺出,鮮活生動(dòng)的教學(xué)案例讓我們感到就在自己身邊。案例背后的思考與解讀,更是讓我們深受啟發(fā)、大開眼界,引起深層次的反思。
看到同行們他們發(fā)表文章和評(píng)論,我得到了很多的啟發(fā)和實(shí)用性的建議和意見,我感覺到前所未有的壓力,認(rèn)識(shí)到加強(qiáng)學(xué)習(xí)的重要性與緊迫性。遠(yuǎn)程研修的過程中,我一直抱著向其他老師學(xué)習(xí)的態(tài)度參與,學(xué)習(xí)他們的經(jīng)驗(yàn),結(jié)合自己的教學(xué)來(lái)思考,反思自己的教學(xué)。
三、改進(jìn)教學(xué)方法,提高教學(xué)水平
網(wǎng)上的專業(yè)學(xué)科學(xué)習(xí)和聽取同行們優(yōu)秀的示范課使我從根本上改變了我原先的傳統(tǒng)學(xué)習(xí)模式,更給我?guī)?lái)了新的學(xué)習(xí)觀念、學(xué)習(xí)方式和教學(xué)理念。這使我對(duì)以往在教學(xué)中的困惑豁然開朗,教學(xué)思路靈活了,對(duì)自己的課堂教學(xué)也有了新的目標(biāo)和方向:首先在課堂的設(shè)計(jì)上一定要力求新穎,講求實(shí)效性,不能為了圖熱鬧,活動(dòng)多多而沒有實(shí)質(zhì)內(nèi)容;教師的語(yǔ)言要有親和力,要和學(xué)生站在同一高度,甚至蹲下身來(lái)看學(xué)生,充分尊重學(xué)生;在課堂上,教師只起一個(gè)引導(dǎo)的作用,不可以在焦急之中代替學(xué)生去解決問題,要尊重學(xué)生的主體地位;教師可以設(shè)置問題引導(dǎo)學(xué)生,但是不能全靠問題來(lái)牽引學(xué)生,讓學(xué)生跟著老師走等。在以后的教學(xué)工作中,我也會(huì)以高質(zhì)量的課堂要求自己,不斷改進(jìn)教學(xué)方法,提高教學(xué)水平。
1、教學(xué)的藝術(shù)不在于傳授本領(lǐng)而在于激勵(lì)、喚醒、鼓舞!,新課標(biāo)的指導(dǎo)下,教什么、教多少、如何教等問題得到了進(jìn)一步明確。教學(xué)的宗旨是要激發(fā)學(xué)生的學(xué)習(xí)興趣。
2、認(rèn)真?zhèn)湔n、上課,合理設(shè)計(jì)學(xué)案、教案,精心設(shè)計(jì)練習(xí)題,有效地進(jìn)行分層教學(xué),使所有的學(xué)生都不掉隊(duì),讓他們成為真正的智慧型人才。
3、教學(xué)方法要靈活多樣,在教學(xué)中創(chuàng)設(shè)生動(dòng)的知識(shí)情景,促進(jìn)學(xué)生知識(shí)、能力、智力、情感意志獲得盡可能大的發(fā)展,提高學(xué)習(xí)效能。在教學(xué)中應(yīng)該堅(jiān)持以科學(xué)的態(tài)度和方法,努力減輕學(xué)生負(fù)擔(dān),盡量讓學(xué)生消除畏難情緒。讓學(xué)生明白一個(gè)事實(shí),那就是課堂上只要積極大膽的參與了各個(gè)教學(xué)活動(dòng),就是最大的成功和可喜的進(jìn)步。
一份耕耘,一分收獲。在今后的工作中努力改善自身,勇敢迎接更多挑戰(zhàn)。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇24
通過這段時(shí)間的培訓(xùn)學(xué)習(xí),使我深刻認(rèn)識(shí)到學(xué)習(xí)的必要性和重要性。使我認(rèn)識(shí)到當(dāng)前課改的目的和意義,也使自己對(duì)課改有了深刻的認(rèn)識(shí),也大大提高了自己對(duì)本學(xué)科的理論素養(yǎng),F(xiàn)將這次培訓(xùn)體會(huì)總結(jié)如下:
一、通過研修使我的教學(xué)觀念得到進(jìn)一步的更新
有機(jī)會(huì)來(lái)參加這次培訓(xùn),有機(jī)會(huì)來(lái)充實(shí)和完善自己,我自豪,我榮幸。但更多感到的是責(zé)任、是壓力!回首這次的培訓(xùn),真是內(nèi)容豐富,形式多樣,效果明顯。培訓(xùn)中有各級(jí)教育專家的專題報(bào)告,有一線教師的專題講座,有學(xué)員圍繞專題進(jìn)行的各種行動(dòng)學(xué)習(xí),還有我回校后的教育教學(xué)實(shí)踐。這次的培訓(xùn)學(xué)習(xí),對(duì)我既有觀念上的洗禮,也有理論上的提高,既有知識(shí)上的積淀,也有教學(xué)技藝的增長(zhǎng)。這是收獲豐厚的一次培訓(xùn),也是促進(jìn)我教學(xué)上不斷成長(zhǎng)的一次培訓(xùn)。
二、拓寬了視野,開闊了眼界
觀看學(xué)習(xí)視頻使我領(lǐng)略到了教育專家和名師的風(fēng)采,專家和名師的課程深入淺出,鮮活生動(dòng)的教學(xué)案例讓我們感到就在自己身邊。案例背后的思考與解讀,更是讓我們深受啟發(fā)、大開眼界,引起深層次的反思。
遠(yuǎn)程研修平臺(tái)上的同行們都在積極努力地學(xué)習(xí),看著他們發(fā)表文章和評(píng)論,我得到了很多的啟發(fā)和實(shí)用性的建議和意見,我為自身的淺薄與不足感到羞愧,認(rèn)識(shí)到加強(qiáng)學(xué)習(xí)的重要性與緊迫性。遠(yuǎn)程研修的過程中,我一直抱著向其他老師學(xué)習(xí)的態(tài)度參與,學(xué)習(xí)他們的經(jīng)驗(yàn),結(jié)合自己的教學(xué)來(lái)思考,反思自己的教學(xué)。
三、提高能力,完善自我
網(wǎng)上的專業(yè)學(xué)科學(xué)習(xí)和聽取同行們優(yōu)秀的示范課使我從根本上改變了我原先的傳統(tǒng)教學(xué)模式,更給我?guī)?lái)了新的教學(xué)觀念、教學(xué)方式和教學(xué)理念。這使我對(duì)以往在教學(xué)中的困惑豁然開朗,教學(xué)思路靈活了,對(duì)自己的課堂教學(xué)也有了新的目標(biāo)和方向:首先在課堂的'設(shè)計(jì)上一定要力求新穎,講求實(shí)效性,不能為了圖熱鬧,活動(dòng)多多而沒有實(shí)質(zhì)內(nèi)容;教師的語(yǔ)言要有親和力,要和學(xué)生站在同一高度,甚至蹲下身來(lái)看學(xué)生,充分尊重學(xué)生;在課堂上,教師只起一個(gè)引導(dǎo)的作用,不可以在焦急之中代替學(xué)生去解決問題,要尊重學(xué)生的主體地位;教師可以設(shè)置問題引導(dǎo)學(xué)生,但是不能全靠問題來(lái)牽引學(xué)生,讓學(xué)生跟著老師走等。在以后的教學(xué)工作中,我也會(huì)以高質(zhì)量的課堂要求自己,不斷提高教學(xué)能力,完善自我。四、反思不足,努力改進(jìn)
通過遠(yuǎn)程研修,使我學(xué)到了很多東西,這對(duì)我來(lái)說是一個(gè)極大的提高。同時(shí),我也重新審視自我,更清醒地認(rèn)識(shí)到自己知識(shí)的匱乏、淺陋,也看清了過去的自己:安于現(xiàn)狀、自滿自足,缺乏終身學(xué)習(xí)的意識(shí),工作中容易被俗念束縛,惰性大,缺少有價(jià)值的嘗試探索;我深深地感到自己在工作中存在著許多不足,因此,我決定在以后的工作中努力改進(jìn):
1、借助遠(yuǎn)程研修,多學(xué)習(xí)、多交流,使自己的知識(shí)面不斷擴(kuò)大,使自己的業(yè)務(wù)水平更上一層樓,以更好的適應(yīng)新課程教學(xué)和時(shí)代的挑戰(zhàn)。
2、教學(xué)的藝術(shù)不在于傳授本領(lǐng)而在于激勵(lì)、喚醒、鼓舞。新課標(biāo)的指導(dǎo)下,教什么、教多少、如何教等問題得到了進(jìn)一步明確。教學(xué)的宗旨是要激發(fā)學(xué)生的學(xué)習(xí)興趣。
3、認(rèn)真?zhèn)湔n、上課,合理設(shè)計(jì)學(xué)案、教案,精心設(shè)計(jì)練習(xí)題,有效地進(jìn)行分層教學(xué),使所有的學(xué)生都不掉隊(duì),讓他們成為真正的智慧型人才。
4、教學(xué)方法要靈活多樣,在教學(xué)中創(chuàng)設(shè)生動(dòng)的知識(shí)情景,促進(jìn)學(xué)生知識(shí)、能力、智力、情感意志獲得盡可能大的發(fā)展,提高學(xué)習(xí)效能。在教學(xué)中應(yīng)該堅(jiān)持以科學(xué)的態(tài)度和方法,努力減輕學(xué)生負(fù)擔(dān),盡量讓學(xué)生消除畏難情緒。讓學(xué)生明白一個(gè)事實(shí),那就是課堂上只要積極大膽的參與了各個(gè)教學(xué)活動(dòng),就是最大的成功和可喜的進(jìn)步。
5、“愛孩子是教師的天職”,愛是教育的源泉,愛學(xué)生就可以給學(xué)生一個(gè)健康的思想,良好的學(xué)習(xí)心態(tài),所以,我們都應(yīng)關(guān)心愛護(hù)每一位學(xué)生,使他們?cè)谖覀兊暮亲o(hù)下茁壯成長(zhǎng)。
6、教師每時(shí)每刻都要學(xué)習(xí),所以,我將在今后的工作之余加強(qiáng)教育理論和教學(xué)方法的學(xué)習(xí)和研究,多讀一些有價(jià)值的教育書籍,努力提高自己的整體素質(zhì)。一份耕耘,一分收獲,相信在以后的工作中,我會(huì)更努力,在學(xué)習(xí)和思考并沒有停止。在今后的工作中努力改善自身,勇敢迎接更多挑戰(zhàn)。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇25
一、數(shù)與代數(shù)A:數(shù)與式:
1:有理數(shù)
有理數(shù):
①整數(shù)→正整數(shù)/0/負(fù)整數(shù)
、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:
、佼嬕粭l水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较,就得到?shù)軸
、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。
在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。
、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:
①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。
②正數(shù)的絕對(duì)值是他本身/負(fù)數(shù)的絕對(duì)值是他的相反數(shù)/0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:加法:
、偻(hào)相加,取相同的符號(hào),把絕對(duì)值相加。
、诋愄(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。③一個(gè)數(shù)與0相加不變。
減法: 減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。
、谌魏螖(shù)與0相乘得0。
③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:
①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。
②0不能作除數(shù)。
乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2:實(shí)數(shù)
無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)
平方根:
、偃绻粋(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。
、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。
、垡粋(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
、芮笠粋(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。
立方根:
、偃绻粋(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。
、谡龜(shù)的立方根是正數(shù)/0的立方根是0/負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實(shí)數(shù):
、賹(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。
②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。
③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
3:代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):
①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。
②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。
③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4:整式與分式
整式:
、贁(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的.和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
、谝粋(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。
③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。
冪的運(yùn)算:AM。AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一樣。
A0=1,A-P=1/AP
整式的乘法:
、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
、趩雾(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
、鄱囗(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。
、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式
方法:提公因式法/運(yùn)用公式法/分組分解法/十字相乘法
分式:
①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
分式的運(yùn)算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:
、偻帜傅姆质较嗉訙p,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:
、俜帜钢泻形粗獢(shù)的方程叫分式方程。
、谑狗匠痰姆帜笧0的解稱為原方程的增根。
B:方程與不等式
1:方程與方程組
一元一次方程:
、僭谝粋(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
2:不等式與不等式組
不等式:
①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。
、诓坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號(hào)的方向不變。
③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
、懿坏仁降膬蛇叾汲艘曰虺酝粋(gè)負(fù)數(shù),不等號(hào)方向相反。
不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
、谝辉淮尾坏仁浇M中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
、矍蟛坏仁浇M解集的過程,叫做解不等式組。
3:函數(shù)
變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):
①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。
、诋(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。
一次函數(shù)的圖象:
、侔岩粋(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。
、谡壤瘮(shù)Y=KX的圖象是經(jīng)過原點(diǎn)的一條直線。
、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。
、墚(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
二、空間與圖形
A:圖形的認(rèn)識(shí):
1:點(diǎn),線,面
點(diǎn),線,面:
、賵D形是由點(diǎn),線,面構(gòu)成的。
、诿媾c面相交得線,線與線相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開與折疊:
①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。
、贜棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
3視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧,扇形:
、儆梢粭l弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
2:角
線:
、倬段有兩個(gè)端點(diǎn)。
、趯⒕段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。
、蹖⒕段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒有端點(diǎn)。
、芙(jīng)過兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:
、賰牲c(diǎn)之間的所有連線中,線段最短。
、趦牲c(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。
角的比較:
、俳且部梢钥闯墒怯梢粭l射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。
②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí)
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇26
初中數(shù)學(xué)集合的運(yùn)算中考知識(shí)點(diǎn)集錦
集合的運(yùn)算知識(shí):它包括有交換律、結(jié)合律、分配對(duì)偶律、對(duì)偶律、同一律等。
集合的運(yùn)算定律
交換律:A∩B=B∩A
A∪B=B∪A
結(jié)合律:A∪(B∪C)=(A∪B)∪C
A∩(B∩C)=(A∩B)∩C
分配對(duì)偶律:A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
對(duì)偶律:(A∪B)^C=A^C∩B^C
(A∩B)^C=A^C∪B^C
同一律:A∪Φ=A
A∩U=A
求補(bǔ)律:A∪A'=U
A∩A'=Φ
對(duì)合律:(A')'=A
等冪律:A∪A=A
A∩A=A
零一律:A∪U=U
A∩U=A
吸收律:A∪(A∩B)=A
A∩(A∪B)=A
德·摩根定律(反演律):(A∪B)'=A'∩B'
(A∩B)'=A'∪B'
知識(shí)拓展:容斥原理(特殊情況):card(A∪B)=card(A)+card(B)-card(A∩B)
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇27
一、圓
1、圓的有關(guān)性質(zhì)
在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(zhǎng)的點(diǎn)都在圓上。
就是說:圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。
圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱弧。
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧。小于半圓的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個(gè)圓叫同心圓。
能夠重合的兩個(gè)圓叫等圓。
同圓或等圓的`半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點(diǎn)的圓
1、過三點(diǎn)的圓
過三點(diǎn)的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
經(jīng)過三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個(gè)步驟:
、偌僭O(shè)命題的結(jié)論不成立。
②從這個(gè)假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾。
、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個(gè)角是鈍角。
證明:設(shè)有兩個(gè)以上是鈍角。
則兩個(gè)鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
不可能有二個(gè)以上是鈍角。
即最多只能有一個(gè)是鈍角。
三、垂直于弦的直徑
圓是軸對(duì)稱圖形,經(jīng)過圓心的每一條直線都是它的對(duì)稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。
弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧。
平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來(lái)的圖形重合。
頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。
推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。
五、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對(duì)的圓周角相等。同圓或等圓中,相等的圓周角所對(duì)的弧也相等。
推理2:半圓(或直徑)所對(duì)的圓周角是直角。90°的圓周角所對(duì)的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié) 篇28
波利亞強(qiáng)調(diào):“數(shù)學(xué)科學(xué)具有兩個(gè)側(cè)面,已經(jīng)形成的數(shù)學(xué)是一門系統(tǒng)的演繹科學(xué);而正在形成中的數(shù)學(xué)則是一門實(shí)驗(yàn)性的歸納科學(xué)”。對(duì)于數(shù)學(xué)科學(xué)具有兩個(gè)側(cè)面的含義的理解,是我們正確把握數(shù)學(xué)教材的編寫意圖和課程理念關(guān)鍵。一本數(shù)學(xué)教材對(duì)教師而言則是一門系統(tǒng)的演繹科學(xué),對(duì)正在學(xué)習(xí)過程中的學(xué)生而言則是一門實(shí)驗(yàn)性的歸納科學(xué)。結(jié)合初中數(shù)學(xué)教材的具體內(nèi)容,對(duì)教材編寫的演繹歸納二重性進(jìn)行分析,以利于教師在數(shù)學(xué)教學(xué)中更好的利用教材設(shè)計(jì)的歸納演繹空間,培養(yǎng)學(xué)生的歸納演繹能力,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí)和數(shù)學(xué)創(chuàng)造能力。
一、利用教材的實(shí)驗(yàn)歸納空間培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新意識(shí)
新課程為了實(shí)現(xiàn)在教學(xué)中培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí)的教學(xué)目標(biāo),為學(xué)生實(shí)驗(yàn)歸納留下了空間和機(jī)會(huì),教師要充分利用好這些空間和機(jī)會(huì)讓學(xué)生發(fā)揮主觀能動(dòng)性,在數(shù)學(xué)化的過程中培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí)和創(chuàng)新意識(shí)。例如在有理數(shù)部分,教材給出一個(gè)思考題:“我們以前學(xué)過加法的交換律、結(jié)合律,在有理數(shù)的加法中它們還適用嗎?計(jì)算30+(-20),(-20)+30。兩次所得的和相同嗎?換幾個(gè)加數(shù)再試一試。你發(fā)現(xiàn)有什么規(guī)律嗎?讓學(xué)生總結(jié):有理數(shù)的加法中,兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。然后讓學(xué)生看書上的結(jié)論發(fā)現(xiàn)與自己總結(jié)的相一致,于是學(xué)生就得到了成功的體驗(yàn),從而增強(qiáng)了學(xué)生學(xué)好數(shù)學(xué)的信心,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,這位學(xué)生的后續(xù)學(xué)習(xí)奠定了堅(jiān)實(shí)的基礎(chǔ),因?yàn)樾判氖浅晒Φ囊话,興趣是最好的老師!
教材的編寫意圖就是為學(xué)生得到這一結(jié)論而設(shè)置的實(shí)驗(yàn)歸納空間。弗賴登塔爾也強(qiáng)調(diào):“學(xué)生通過自己的努力得到的結(jié)論和創(chuàng)造是教育內(nèi)容的一部分”。為了培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí)和創(chuàng)新意識(shí),必須充分利用好教材的實(shí)驗(yàn)歸納空間。書中這樣的歸納空間很多,有理數(shù)乘法的交換律、結(jié)合律等都是這樣處理的。為了有利于學(xué)生理解教材中的一些數(shù)學(xué)結(jié)論,教材從具體到抽象的編排體系,為學(xué)生的實(shí)驗(yàn)歸納創(chuàng)造了機(jī)會(huì)。例如在等式性質(zhì)部分,書中讓學(xué)生觀察天平的的兩邊都加(或減)同樣的量,天平還保持平衡。讓學(xué)生通過天平平衡事實(shí)來(lái)理解等式的性質(zhì)。這樣的編排體系為學(xué)生掌握和理解等式的`性質(zhì)提供了歸納實(shí)驗(yàn)機(jī)會(huì)。數(shù)學(xué)上的實(shí)驗(yàn)往往是思想中的實(shí)驗(yàn)。教材在一元一次方程部分,在通過布列方程解決實(shí)際問題的最后部分,書中歸納出用一元一次方程分析和解決實(shí)際問題的基本過程框圖,這樣做是為了讓學(xué)生掌握數(shù)學(xué)思想方法。關(guān)于解一元一次方程的步驟,書中也是讓學(xué)生通過具體的解方程的操作過程中歸納出來(lái)的。
二、用新課程標(biāo)準(zhǔn)的理念處理初中數(shù)學(xué)教材內(nèi)容
在數(shù)學(xué)新課程理念中,要求學(xué)生能夠用數(shù)學(xué)的眼光和角度觀察、提出和解決問題,即培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí)和數(shù)學(xué)創(chuàng)新意識(shí)。培養(yǎng)學(xué)生的合情推理能力和論證推理能力。這些教學(xué)理念和目標(biāo),要結(jié)合教材的歸納演繹二重性來(lái)實(shí)現(xiàn)。對(duì)于傳統(tǒng)教材中有些內(nèi)容進(jìn)行了刪減,例如一元二次方程與根的系數(shù)關(guān)系、直角三角形的射影定理等內(nèi)容在新教材中不再以教材正文內(nèi)容的形式出現(xiàn),但是在習(xí)題中卻涉及到了這些內(nèi)容。這樣的編排意圖同樣是為學(xué)生留下的歸納演繹空間。
在教學(xué)中對(duì)這部分內(nèi)容的處理應(yīng)該以研究性學(xué)習(xí)的形式布置學(xué)生認(rèn)真完成,再歸納到知識(shí)系統(tǒng)之中,從而使學(xué)生學(xué)習(xí)的知識(shí)結(jié)構(gòu)不斷完善,更加演繹系統(tǒng),讓學(xué)生經(jīng)歷創(chuàng)新和發(fā)現(xiàn),從而體驗(yàn)數(shù)學(xué)創(chuàng)新的快樂和成功,更重要的是增強(qiáng)學(xué)生的自信心并形成數(shù)學(xué)創(chuàng)新意識(shí)。這就是教材編排時(shí)在為培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新意識(shí)而創(chuàng)設(shè)的歸納演繹空間。學(xué)生在對(duì)某一本書的數(shù)學(xué)內(nèi)容學(xué)習(xí)的過程中,學(xué)生的經(jīng)歷是不斷試驗(yàn)、不斷歸納的過程,但是,在學(xué)生對(duì)于某一本書的數(shù)學(xué)內(nèi)容學(xué)習(xí)結(jié)束時(shí),在學(xué)生的腦海中應(yīng)該是系統(tǒng)的演繹的知識(shí)結(jié)構(gòu),結(jié)構(gòu)上應(yīng)該是與傳統(tǒng)教材的演繹性相一致的數(shù)學(xué)。
